توليد كننده هاي اعداد تصادفي.پایان نامه ارزیابی نوسانات قیمت سهام

توليد كننده هاي اعداد تصادفي

روش شبيه سازي مونت كارلو با فرموله نمودن فرآيندي تصادفي به دنبال استفاده از توليدكننده هاي اعداد تصادفي بوده كه در نهايت با استفاده از آنها بتواند جواب مسئله مشخصي را بدست آورد. اين روش توسط محققين متعددي مانند لوس آلاموس، متروپليس و يولام مطرح و مورد استفاده واقع شده است. ارتقا و بهبود عملكرد رايانه ها در خصوص انجام محاسبات فراوان و تكراري موجب توجه و عنايت بيشتر به اين روش شده است. به دليل آنكه در روش شبيه سازي مونت كارلو از اعداد تصادفي استفاده مي شود آشنايي با توليد كننده هاي متنوع اعداد تصادفي در اين روش از اهميت ويژه اي برخوردار بوده است.

در زمان هاي قديم به منظور توليد اعداد تصادفي از روش هاي دستي مانند پرتاب سكه، پرتاب تاس و بهم زدن كارت ها استفاده مي شده است. در زمان هاي بعدي از ابزارهاي فيزيكي مانند نشانگرهاي صوتي كه قابليت اتصال به رايانه را نيز دارا بودند جهت توليد اعداد تصادفي استفاده مي شده است. با وجود مزيت هايي كه استفاده از ابزارهاي فيزيكي در زمان خويش به همراه داشتند بنا به دلايل ذيل استفاده از آنها جهت مقاصد شبيه سازي رايانه اي در طول زمان محدود و ناچيز گرديد:

  • روش هاي فيزيكي از سرعت بسيار پاييني جهت توليد اعداد تصادفي برخوردار بودند.
  • اعداد تصادفي كه با استفاده از اين روش ها توليد مي شدند از قابليت بازتوليد برخوردار نبودند.

با وجود آنكه در زمان هاي اخير روش هاي توليد فيزيكي پيشرفته اي جهت توليد اعداد تصادفي بوجود آمده است كه قابليت توليد اعداد تصادفي را با سرعتي بسيار بالا دارا بوده اند اما ايراد مربوط به عدم بازتوليد اعداد تصادفي توليدي با استفاده از اين روش ها همچنان به قوت خويش باقي مانده است.

در حال حاضر معمولا از روش ها و الگوريتم هاي ساده اي جهت توليد اعداد تصادفي استفاده مي شود كه به آساني توسط رايانه ها قابل اجرا بوده اند. اين الگوريتم هاي ساده علاوه برآنكه سرعت بالايي جهت توليد اعداد تصادفي دارا بوده حجم پاييني را در رايانه ها اشغال نموده و قابليت بازتوليد اعداد تصادفي توليدي را نيز دارا بوده اند.

توليدكننده هاي اعدادتصادفي مناسب و مطلوب بايستي تمامي مشخصات و ويژگي هاي آماري مربوط به اعداد تصادفي را دارا باشند اما با اين وجود روش ها و الگوريتم هايي كه براي توليد اعداد تصادفي از آنها استفاده مي شود بدليل آنكه توانايي ارضاي تمامي مشخصات مربوطه را دارا نبوده اند، در بيشتر مواقع اعداد تصادفي توليدي بوسيله اين توليدكننده ها را اعداد شبه تصادفي مي نامند.

تمامي توليدكننده هاي اعداد تصادفي در مورد توليد اعداد تصادفي مطلوب و مناسب براي شبيه سازي هاي رايانه اي بايستي از ويژگي ها و خصوصيات مشخصي برخوردار باشند كه در ادامه به اين مشخصه هاي كليدي اشاره مي نماييم:

  • طول دوره: هر توليدكننده اي براي توليد اعداد تصادفي بايستي طول دوره مشخصي داشته باشد. منظور از طول دوره، تعداد اعدادي بوده است كه بازتوليد مي شوند يعني پس از توليد چند عدد تصادفي دوباره چرخه اعداد تصادفي توليدي تكرار شده و اعداد باز توليد مي شوند.
  • بازتوليد: منظور از بازتوليد آن بوده كه اعداد تصادفي كه توليد شده اند را مي توان بار ديگر به همان صورت كنوني توليد مجدد نمود يا خير. به بيان ديگر آيا توليدكننده اعداد تصادفي مي تواند در طي چند مرتبه توليد اعداد تصادفي با ملحوظ نمودن ورودي هاي يكسان خروجي هاي يكساني توليد نمايد يا خير.
  • سرعت: يكي ديگر از ويژگي هاي توليدكننده هاي اعداد تصادفي سرعت توليد اعداد تصادفي بوسيله آنها بوده است. در اين خصوص اينگونه مطرح مي شود كه به دنبال توليدكننده هايي بوده ايم كه اين توانايي را دارا باشند كه اعداد تصادفي را با سرعت بيشتري توليد نمايند و بدين وسيله بتوانند در زمان كوتاه تري اعداد تصادفي بيشتري توليد نمايند.
  • قابليت جابجايي: منظور از قابليت جابجايي اين بوده كه توليدكننده هاي اعداد تصادفي از اين قابليت برخوردار بوده باشند كه بر روي انواع رايانه ها قابل اجرا بوده و قابليت انتقال و جابجايي و اجرا را بر روي انواع سيستم هاي رايانه اي دارا باشند.
  • تصادفي بودن: يكي ديگر از خصيصه هاي توليدكننده هاي اعداد تصادفي قابليت آنها در توليد اعدادي بوده كه در آنها هيچ الگوي مشخصي وجود نداشته و كاملا تصادقي باشند كه در اين مورد ويژگي هاي تئوريك توليدكننده ها و آزمايشات آماري مختلف به انجام مي رسد تا ميزان تصادفي بودن اعداد توليد شده توسط توليدكننده هاي اعداد تصادفي مشخص گردد.

يكي از مباحث مهم و مطرح در مورد شبيه سازي مونت كارلو كه به منزله هسته اصلي اين روش نيز شمرده مي شود، توليد اعداد تصادفي و الگوريتم هاي مربوط به آنها بوده است. قبل از مطرح نمودن روش هاي مختلف توليد اعداد تصادفي به دو نكته ذيل كه در ادامه براي توليد دنباله اي از اعداد تصادفي مورد توجه بوده است اشاره مي نماييم:

  • هر عدد تصادفي توليدي به صورتي پيوسته در دامنه اي بين 0 و 1 قرار گرفته است.
  • اعداد تصادفي توليدي به صورت دو به دو از هم مستقل مي باشند. بنابراين پيش بيني دنباله اعداد تصادفي غيرممكن بوده است. ( معارفيان، 1389 ، ص57-59)